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Abstract
Stochastic models for quantum state reduction give rise to statistical laws that
are in most respects in agreement with those of quantum measurement theory.
Here we examine the correspondence of the two theories in detail, making a
systematic use of the methods of martingale theory. An analysis is carried out
to determine the magnitude of the fluctuations experienced by the expectation
of the observable during the course of the reduction process and an upper bound
is established for the ensemble average of the greatest fluctuations incurred. We
consider the general projection postulate of Lüders applicable in the case of a
possibly degenerate eigenvalue spectrum, and derive this result rigorously from
the underlying stochastic dynamics for state reduction in the case of both a pure
and a mixed initial state. We also analyse the associated Lindblad equation
for the evolution of the density matrix, and obtain an exact time-dependent
solution for the state reduction that explicitly exhibits the transition from a
general initial density matrix to the Lüders density matrix. Finally, we apply
Girsanov’s theorem to derive a set of simple formulae for the dynamics of the
state in terms of a family of geometric Brownian motions, thereby constructing
an explicit unravelling of the Lindblad equation.

PACS numbers: 02.50.Fz, 03.65.Ta, 03.65.Yz

1. Introduction

According to nonrelativistic quantum mechanics, the evolution of the state of an isolated
quantum system is described by a deterministic unitary transformation, governed by the
Schrödinger equation. The behaviour of the state of a quantum system following the
measurement of an observable is less well understood, however, and has been the subject of
much debate. In quantum measurement theory it is usually assumed that when the measurement
of an observable with a discrete spectrum is carried out on a system prepared in a prescribed
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initial state, then the state reduces randomly to one of the eigenstates of the observable
being measured. This is the so-called projection postulate of von Neumann [1], which
was later generalized by Lüders [2] to handle the case of a measurement of an observable
with a degenerate spectrum. The Lüders postulate has the virtue of being unambiguously
applicable whether or not the initial state is pure, and whether or not the eigenvalue spectrum
is nondegenerate.

Stochastic extensions of the Schrödinger equation have been increasingly attracting
attention as plausible dynamical models for state vector reduction in quantum mechanics [3–9].
In such models, the Schrödinger equation is generalized to take the form of a special type of
stochastic differential equation on Hilbert space. For example, given a Hamiltonian Ĥ and a
commuting observable F̂ with a discrete spectrum, there exists a natural stochastic differential
equation generalizing the Schrödinger equation with the property that starting from a given
initial pure state, the system evolves randomly in such a way that asymptotically it reaches
one of the eigenstates of F̂ with the correct quantum probability. More generally, given a
compatible family of observables F̂α (α = 1, 2, . . . , r), each of which commutes with Ĥ , a
similar result holds, with an asymptotic reduction to one of the common eigenstates of the
given family of observables. For recent reviews outlining the development of this approach,
with extensive references, see [10] and [11].

The purpose of this paper is to analyse in some detail the statistical laws associated with
stochastic extensions of the Schrödinger equation, and to show in particular how the projection
postulate in the general form due to Lüders can be derived as a consequence of the dynamics.
The plan of the paper is as follows. In sections 2 and 3 we review the von Neumann and
Lüders versions of the projection postulate. In section 4 we present a reasonably self-contained
account of the basic principles of stochastic state reduction, along with a brief synopsis of the
relevant mathematical tools of stochastic analysis. For the purposes of illustration we consider
primarily the case of an energy-based reduction model, for which the associated dynamics are
given by the stochastic differential equation (11), though most of the relevant mathematical
and physical ideas can be readily generalized to the class of reduction processes noted above,
based on a compatible family of observables that commute with the Hamiltonian.

Throughout the discussion we emphasize the role of martingale methods as an aid to the
advancement of our understanding of quantum phenomena. In particular we show that the
expectation of the Hamiltonian, which fluctuates during the course of the reduction process,
is a martingale, and its variance is a supermartingale. The martingale property satisfied by
the expectation of the Hamiltonian can be viewed as a kind of weak conservation law for
the energy, generalizing the Ehrenfest relation. In section 5 we use the Doob–Kolmogorov
maximal inequalities to obtain a set of upper and lower bounds on the fluctuations of the energy
during the reduction process, and show that the magnitude of a typical fluctuation is roughly
of the order of the initial energy uncertainty. We also demonstrate that the process followed
by the squared energy uncertainty is given by the conditional variance of the terminal value of
the energy.

In sections 6 and 7 we derive the projection postulate, and prove that the collapse to the
general Lüders state occurs with the appropriate probability, whether or not the initial state is
pure and whether or not the eigenvalue spectrum is degenerate. Then in section 8 we study the
implied evolution of the density matrix for a given initial state, not necessarily pure, and derive
an exact time-dependent solution for the Lindblad equation associated with the reduction. We
conclude in section 9 by introducing a change-of-measure technique to solve the stochastic
differential equation for the dynamics of the state vector, thereby constructing an explicit
unravelling of the Lindblad equation.
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2. Von Neumann projection

Let us consider a quantum system which, for mathematical simplicity, we shall assume is
characterized by a finite dimensional Hilbert space H of dimension N . Suppose that F is an
observable for which the corresponding Hermitian operator acting on H is denoted F̂ . Our
interest here is in providing a clearer understanding of what happens if the observable F is
measured when the system is in a given pure state, corresponding to a ray through the origin
in H.

First we shall examine the more straightforward case where F has a nondegenerate
spectrum, and the eigenvalues of F̂ are given by the numbers fn for n = 1, 2, . . . , N , with the
property that fn �= fm for n �= m. The eigenstate corresponding to the eigenvalue fn will be
denoted |fn〉, so that F̂ |fn〉 = fn|fn〉.

Let us write |ψ0〉 for a representative state vector for the given initial pure state. We
shall assume that |ψ0〉 is normalized to unity, so 〈ψ0|ψ0〉 = 1. We shall also assume that
〈fn|fm〉 = δnm.

According to the projection postulate, when a measurement of F is made, the state vector
undergoes a transition |ψ0〉 �→ |fn〉 to one of the eigenstates of F̂ . This occurs for a specified
value of n with the probability

πn = |〈fn|ψ0〉|2 (1)

and the result of the measurement in that case is the eigenvalue fn. The associated transition
|ψ0〉 �→ |fn〉 is called the state reduction or ‘collapse of the wavefunction’ arising from the
measurement of F .

A more precise way of stating this is that when the observable F is measured, the initial
pure state |ψ0〉 transforms to a ‘mixture’, i.e. a random state |f〉 with the property that |f〉 is
given by the eigenstate |fn〉 with the probability πn. The fact that |f〉 is a mixture reflects our
ignorance of what the result of the measurement process will be. When the observable F is
measured, we can be confident that the result is one of the values fn, and that the new state is
the eigenstate represented by |fn〉, but we cannot say in advance which one it will be. This is
what is meant by saying that the result of the measurement is random.

The density matrix ρ̂ associated with the random state |f〉 and the probability distribution
πn is given by the expectation of the random projection operator |f〉〈f | associated with |f〉.
In other words, we have

ρ̂ = E
[|f〉〈f |]

=
N∑
n=0

πn|fn〉〈fn|. (2)

Here E denotes expectation with respect to the distribution πn. The mixture |f〉 typically
carries more information than the density matrix ρ̂ alone, because if one is given ρ̂, then in
general there are many different mixtures that correspond to it [12].

The significance of the density matrix ρ̂ is that ifG is any other observable, not necessarily
compatible with F , and we measure G after we measure F , then the expected value of G is

E
[〈f |Ĝ|f〉] =

∑
n

πn〈fn|Ĝ|fn〉

= Tr
∑
n

πn|fn〉〈fn|Ĝ

= Trρ̂Ĝ (3)

where Tr denotes the trace operation.
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An alternative way of facilitating the description of the density matrix associated with the
measurement outcome for an observableF is to introduce the projection operator P̂n = |fn〉〈fn|
associated with the eigenvalue fn. When F is measured, the state |ψ0〉 is transformed to
π

−1/2
n P̂n|ψ0〉 if the measurement outcome is known to be fn, for which the corresponding

probability is πn. An analogous transformation holds for the corresponding density matrix
ρ̂0 = |ψ0〉〈ψ0| which transforms according to the scheme

ρ̂0 �→ ρ̂∞ = π−1
n P̂nρ̂0P̂n

= |fn〉〈fn|. (4)

Here we use the notation ρ̂0 to signify the density matrix before the measurement, and ρ̂∞ to
signify the density matrix after the measurement.

More generally, if F is measured but the outcome is not known, then ρ̂0 transforms
according to the scheme

ρ̂0 �→ ρ̂∞ =
N∑
n=1

P̂nρ̂0P̂n

=
N∑
n=1

|fn〉〈fn|ψ0〉〈ψ0|fn〉〈fn|

=
N∑
n=1

πn|fn〉〈fn|. (5)

The density matrix itself is often referred to as representing the ‘state’ of a quantum system.
This is because the density matrix contains all the information required to calculate ensemble
expectations and probabilities for the measurement outcomes of quantum observables,
conditional on the present state of knowledge of the observer. Therefore, different mixtures
yielding the same density matrix are equivalent as far as observations are concerned.

In the examples above, the ensemble interpretation is as follows. We prepare a large
number of independent identical quantum systems each in the state |ψ0〉 and then measure F .
Now there are two possibilities. In the first case, we only keep those systems for which the
result of the measurement of F was the value fn. The new ensemble then consists of a large
number of independent systems each of which is in the pure state |fn〉. The corresponding
density matrix is |fn〉〈fn|. In the second case, we keep all the systems after F has been
measured. The resulting ensemble is therefore a mixture, and for each value of n, a given
system is in the pure state |fn〉 with probability πn. The corresponding density matrix is then
given by (5).

3. Lüders’ postulate

Let us now turn to the case of an observable with a degenerate spectrum. In this case, we shall
write |fn,j 〉 for an orthogonal basis of distinct eigenstates of F̂ sharing the same eigenvalue fn.
Here n = 1, 2, . . . , D, where D is the number of distinct energy levels, and j = 1, 2, . . . , dn,
where dn is the dimensionality of the subspace Hn of H spanned by the eigenstates with
eigenvalue fn. For convenience we normalize |fn,j 〉 such that

〈fn,j |fm,k〉 = δnmδjk. (6)
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Then the projection operator P̂n onto the subspace spanned by states for which F = fn is
given by

P̂n =
dn∑
j=1

|fn,j 〉〈fn,j |. (7)

We note that P̂n is independent of the specific choice of basis made for the designated subspace,
and that P̂nP̂m = P̂nδnm and P̂n|fm,k〉 = δnm|fm,k〉.

With these preliminaries in mind, suppose the observable F is measured when the system
is in the pure state |ψ0〉, and the result of the measurement is one of the degenerate eigenvalues
fn. In this case, it is perhaps less obvious a priori what the correct probability is for the
outcome, or indeed what becomes of the state once the measurement result is known. A
more refined version of the projection postulate is required to deal with this situation, due to
Lüders [2], according to which the measurement outcome probability is

Prob [F = fn] = 〈ψ0|P̂n|ψ0〉 (8)

and the associated state reduction is given by

|ψ0〉 �→ π−1/2
n P̂n|ψ0〉 (9)

where

πn = 〈ψ0|P̂n|ψ0〉

=
dn∑
j=1

|〈fn,j |ψ0〉|2. (10)

Thus, of all the possible eigenstates with eigenvalue fn, a single choice is made, given by the
projection from the initial state vector onto the relevant subspace. As in the nondegenerate case,
the measurement outcome can be described by a mixture, where the random state |f〉 is given
by the normalized Lüders state |fn〉 = π−1/2

n P̂n|ψ0〉 with probability πn (n = 1, 2, . . . , D).
The validity of the Lüders postulate can, in principle, be tested by a succession of

measurements of the energy of a system, followed by the measurement of another observable
incompatible with the energy. Consider for example the system consisting of a pair of
noninteracting spin- 1

2 particles in an external magnetic field aligned along the z-axis, for
which the energy eigenstates are the spin-0 singlet and spin-1 triplet. The corresponding
eigenvalues are degenerate and are given by E1 = −1, E2 = E3 = 0, and E4 = 1, in suitable
units. We choose the initial state such that the Lüders state associated with the degenerate
energy eigenvalue is given by the spin-0 singlet. Then, for an ensemble of identically prepared
systems, we measure the energy, and discard those systems for which the outcome is given
by one of the eigenvalues ±1. The remaining systems, according to Lüders, are in the spin-
0 singlet state, whereas according to von Neumann [1], these states would in general be in
superpositions of the singlet and Sz = 0 triplet states, the precise details of which depend
on the nature of the measurement apparatus. In the present set-up, one can measure the total
spin operator to determine the outcome of the initial energy measurement. This is because the
result of the total spin gives the eigenvalue 0 if and only if the system is in the singlet state.

An important feature of the Lüders postulate is the inherent ‘instability’ of the reduction
process implied for certain types of measurements. That is, in the case of an observable with
a degenerate eigenvalue fn, the projection is onto a single state π−1/2

n P̂n|ψ0〉; whereas if the
observable is perturbed even slightly, breaking the degeneracy and producing, say, two distinct
but close eigenvalues fn and fn′ , then the reduction process bifurcates, leading to one or the
other of two orthogonal, and hence maximally separated, eigenstates |fn〉 and |fn′ 〉.
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Thus we are led to consider that if the phenomenon of state reduction itself arises as a
consequence of a dynamical process, then this process must have sufficiently special properties
to ensure that under a smooth deformation of the parameters characterizing the observable being
measured, the resulting dynamics exhibits the required discontinuous behaviour and produces
the corresponding bifurcation in the postulated transition probabilities. In what follows, we
shall demonstrate that the standard stochastic models for quantum state reduction exhibit the
required special properties, including the relevant bifurcation phenomena. In short, we can
derive the projection postulate from a dynamical model, including the specifics of the Lüders
postulate and its consequences in the case of a degenerate spectrum and a mixed initial state.

4. State vector reduction

In this section we consider in some detail the case of the standard energy-based stochastic
extension of the Schrödinger equation, for which, if we set h̄ = 1, the dynamics are given by
the following stochastic differential equation on H:

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8σ

2(Ĥ −Ht)2|ψt 〉 dt + 1
2σ(Ĥ −Ht)|ψt 〉 dWt. (11)

The properties of dynamical processes of this type have been investigated by a number of
authors [4, 6–9, 13]. In particular, as we shall demonstrate with various examples, many of
the familiar probabilistic features of standard quantum mechanics, including the Born rules,
can be deduced from (11), or suitable generalizations thereof. Here, |ψt 〉 denotes the random
state vector at time t , for which an initial state |ψ0〉 is prescribed. For the moment we consider
the case when |ψ0〉 is known, and later we turn to the case where |ψ0〉 is random. For the
expectation of the Hamiltonian operator Ĥ in the state |ψt 〉 we write

Ht = 〈ψt |Ĥ |ψt 〉
〈ψt |ψt 〉 (12)

from which it follows thatHt itself can be interpreted as a random process, which we shall call
the energy process. Strictly speaking, an expression such as (Ĥ −Ht)2|ψt 〉 in (11) should be
written (Ĥ −Ht 1̂)2|ψt 〉, where 1̂ is the identity operator, but there will be no ambiguity if we
use the more compact notation.

The energy-based stochastic extension of the Schrödinger equation (11) is of great interest
because it represents perhaps the simplest plausible model for the collapse of the wave function,
and as such exhibits many remarkable features, both physically and mathematically. It will be
useful if we begin our analysis with a brief overview of the probabilistic framework implicit
in the characterization of (11).

The stochastic differential equation for the process |ψt 〉 is to be understood as defined on
a fixed probability space (�,F,P) equipped with a filtration Ft , with respect to which Wt is
a standard Wiener process (Brownian motion). Here � is the sample space, F is a σ -field on
�, and P is a probability measure on F .

The filtration Ft represents the information available at time t , where t ∈ [0,∞). More
precisely, a filtration of F is a collection Ft (0 � t <∞) of σ -subfields of F with the property
that s � t implies Fs ⊂ Ft . A functionX : � �→ R is said to be measurable with respect to F
if for each x ∈ R the set consisting of all ω ∈ � satisfyingX(ω) � x is an element of F . This
assures that Prob[X � x] exists with respect to the given measure P on F , and we say that X
is a random variable on the probability space (�,F,P). Then by a random process we mean
a parametrized family of random variablesXt (0 � t <∞) on (�,F,P). With a slight abuse
of notation we let Xt stand both for the entire process Xt (0 � t <∞), as well as the random
variable Xt for some given value of t ; usually it will be evident from context which meaning
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is intended. Likewise Ft may denote the entire filtration Ft (0 � t < ∞), or the σ -subfield
of F corresponding to the information set at time t . If a random process Xt is such that for
each value of t the corresponding random variable Xt is Ft -measurable, then we say that the
process Xt is adapted to the filtration Ft . The idea of ‘adaptedness’ is important because it is
through this device that a notion of causality is introduced for the class of process we consider.

It should be emphasized that the probabilistic concepts outlined here and in what follows
are introduced not merely for the sake of mathematical clarity (although this is in itself a
desirable feature), but also because it makes possible the use of various powerful analytical
tools, examples of which we shall discuss shortly.

The concept of conditional expectation plays a particularly important role in the theory of
quantum state reduction, and hence it will be helpful if we elaborate slightly on the idea here.
For any random variable X on (�,F,P) we define its expectation

E[X] =
∫
�

X(ω) dP (ω) (13)

by use of the Lebesgue integral. One can think of E[X] as the ensemble average of X. Then
if E is a σ -subfield of F , the random variable Y is said to be (a version of) the conditional
expectation of X with respect to E if Y is E-measurable and if E[X1A] = E[Y1A] for all sets
A ∈ E . In that case we write Y = E[X|E]. Here 1A denotes the indicator function for the setA,
so 1A(ω) = 1 for ω ∈ A and 1A(ω) = 0 for ω /∈ A. By convention we write Et [X] = E[X|Ft ]
for the conditional expectation of X given information up to time t . One can think of Et [X]
as the ensemble average ofX conditional on the history of events up to time t being specified.

A useful result that follows on from these definitions is the so-called ‘tower property’ of
conditional expectation, which says that if D is aσ -subfield of E then E [E[X|E]|D] = E[X|D].
If we set D = (∅, �), the smallest σ -subfield of F , then E[X|D] = E[X]. This is because
the only D-measurable random variables in that case are the constants: if X(ω) is constant
on �, then for any given x we have X(ω) � x either for all ω ∈ � or for no ω ∈ �;
conversely, if X(ω) is not constant, then we can find a value of x and two points ω1, ω2 ∈ �
such that X(ω1) � x and X(ω2) > x, which shows that X(ω) is not D-measurable—that
is to say, the set {ω : X(ω) � x} is not an element of D. It follows then from the tower
property that E [E[X|E]] = E[X], the so-called law of total probability. In the case of
a filtration Ft (0 � t < ∞), if we take E = Ft and D = Fs , then the tower property
reads Es [Et [X]] = Es[X] for s � t ; whereas the law of total probability implies that
E [Et [X]] = E[X] for all t � 0.

Now suppose Xt (0 � t < ∞) is an adapted process on a probability space (�,F,P)
with filtration Ft (0 � t <∞). Then we sayXt is a martingale if the following two conditions
hold: E[|Xt |] < ∞ for all 0 � t < ∞, and Es[Xt ] = Xs for all 0 � s � t < ∞. If instead
of the latter condition Xt satisfies Es[Xt ] � Xs then we say Xt is a submartingale, and if
Es[Xt ] � Xs we say Xt is a supermartingale.

Returning now to our investigation of the process (11), we note that the parameter σ
governs the rate at which the state vector reduction proceeds for a given level of initial
uncertainty in the energy. The units of σ are

σ ∼ [energy]−1[time]−1/2. (14)

The characteristic timescale τR associated with the collapse of the wavefunction is

τR = 1

σ 2V0
(15)

where V0 is the square of the initial energy uncertainty +H .
In what follows we shall make no specific assumptions about the value of σ . Nevertheless,

we note, as is discussed in [7, 8], that if σ ∼ M
−1/2
p in microscopic units with h̄ = c = 1,
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whereMp is the Planck mass, then the ‘large numbers’ cancel out and we are left with a typical
reduction timescale of

τR ∼
(

2.8 MeV

+H

)2

s. (16)

This expression is interesting as a candidate for τR inasmuch as it relates energy spreads typical
of atomic and nuclear phenomena to timescales that are accessible in the laboratory.

The factor of 1
2 appearing in front of σ in (11) is for convenience, and ensures consistency

with the notation of [7–9].
It follows from the Ito rules (dt)2 = 0, dt dWt = 0, and (dWt)2 = dt , as well as the special

form of the nonlinear terms appearing in (11), that the norm of the state |ψt 〉 is preserved under
the evolution (11). This can be seen as follows. The Ito product rule states that if Xt and Yt
are Ito processes then d(XtYt ) = Yt dXt +Xt dYt + dXt dYt . As a consequence, we have

d(〈ψt |ψt 〉) = (d〈ψt |)|ψt 〉 + 〈ψt |(d|ψt 〉) + (d〈ψt |)(d|ψt 〉). (17)

Now the Hermitian conjugate of (11) is

d〈ψt | = i〈ψt |Ĥ dt − 1
8σ

2〈ψt |(Ĥ −Ht)2 dt + 1
2σ 〈ψt |(Ĥ −Ht) dWt. (18)

Therefore, by use of the Ito rules, we obtain

(d〈ψt |)|ψt 〉 = (
iHt − 1

8σ
2Vt

)〈ψt |ψt 〉 dt (19)

and its conjugate,

〈ψt |(d|ψt 〉) = ( − iHt − 1
8σ

2Vt
)〈ψt |ψt 〉 dt (20)

together with

(d〈ψt |)(d|ψt 〉) = 1
4σ

2Vt 〈ψt |ψt 〉 dt (21)

where Vt is given by formula (23) below. It follows then from (17) that d(〈ψt |ψt 〉) = 0, as
desired. This result is useful in calculations because we can assume the initial norm to be
unity, without loss of generality, and thus 〈ψt |ψt 〉 = 1 for all t .

An analogous calculation shows that the energy process Ht defined in (12) satisfies

dHt = σVt dWt (22)

where Vt is the process for the variance (squared uncertainty) of Ĥ in the state |ψt 〉, given by

Vt = 〈ψt |(Ĥ −Ht)2|ψt 〉
〈ψt |ψt 〉 . (23)

The variance process for the Hamiltonian has the property that Vt = 0 at time t if and only if
|ψt 〉 is an energy eigenstate at that time. As a consequence of (22), we can write

Ht = H0 + σ
∫ t

0
Vu dWu (24)

where H0 is the initial expectation value for the energy. Now it is a general property of the
stochastic integral that for any Ft -adapted integrand At satisfying E

[ ∫ t
0 A

2
u du

]
<∞ we have

Es

[∫ t

0
Au dWu

]
=

∫ s

0
Au dWu (s � t). (25)

The variance process Vt is bounded by 1
4 (E+ −E−)2 where E+ and E− are the largest and the

smallest energy eigenvalues, respectively, which implies that
∫ t

0 V
2
u du < ∞. Furthermore,

we note that |Ht | is bounded by max(|E+|, |E−|). It follows that Ht is a martingale:

Es[Ht ] = Hs (s � t). (26)
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The martingale condition is the stochastic analogue of a conservation law, and thus (26) can
be interpreted as a weak conservation law for the energy. We recall that, for ordinary quantum
mechanical evolution in the case of a time-independent Hamiltonian, the Schrödinger equation
∂t |ψt 〉 = −iĤ |ψt 〉 ensures that the expectation of the Hamiltonian Ht = 〈ψt |Ĥ |ψt 〉/〈ψt |ψt 〉
is conserved along the Schrödinger trajectories. In the case of the stochastic extension of
the Schrödinger equation we have instead the martingale relation (26) which ensures that the
ensemble average of the energy is conserved.

Because (26) plays a pivotal role in understanding the nature of the reduction process, we
shall sometimes refer to the system of stochastic dynamics described by (11) as a martingale
model for quantum state reduction.

We note, more generally, that if the operator Ĝ = g(Ĥ ) is given by a function of Ĥ , then
the process

Gt = 〈ψt |Ĝ|ψt 〉
〈ψt |ψt 〉 (27)

is also weakly conserved, i.e. Es[Gt ] = Gs for s � t . Thus, for example, if g(x) = xn and
we introduce the notation

H
(n)
t = 〈ψt |Ĥ n|ψt 〉

〈ψt |ψt 〉 (28)

for the nth moment of the energy, then

dH(n)
t = σ (

H
(n+1)
t −HtH(n)

t

)
dWt (29)

where Ht = H(1)
t .

With these formulae in mind, let us consider now the dynamics of the variance process
Vt . Writing Vt = H(2)

t − (Ht)2 it follows, according to Ito’s lemma, that

dVt = dH(2)
t − 2Ht dHt − (dHt)2. (30)

By use of the Ito rules together with (29) we then deduce that

dVt = −σ 2V 2
t dt + σβt dWt (31)

where

βt = 〈ψt |(Ĥ −Ht)3|ψt 〉
〈ψt |ψt 〉 (32)

is the skewness of the energy distribution at time t , i.e. the third central moment of the
Hamiltonian. More specifically, we have βt = H(3)

t − 3HtH
(2)
t + 2(Ht)3.

Integrating equation (31) for the dynamics of the variance we obtain

Vt = V0 − σ 2
∫ t

0
V 2
u du + σ

∫ t

0
βu dWu (33)

from which it follows at once, by use of (25), that

Es[Vt ] = Vs − σ 2Es

[∫ t

s

V 2
u du

]
(34)

and thus

Es[Vt ] � Vs (35)

for s � t , which shows that Vt is a supermartingale, i.e. a process that on average decreases.
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In particular, if we write V̄t = E[Vt ] for the ensemble average of Vt , then it follows as a
special case of (34) that

V̄t = V0 − σ 2E

[∫ t

0
V 2
u du

]
. (36)

Differentiating this expression with respect to t we obtain

dV̄t
dt

= −σ 2V̄ 2
t (1 + ηt ) (37)

where the process ηt defined by ηt = E[(Vt − V̄t )
2]/V̄ 2

t is non-negative. Therefore, by
integration of (37), we obtain

V̄t = V0

1 + σ 2V0(t + ξt )
(38)

where ξt = ∫ t
0 ηs ds. As a consequence we deduce that

V̄t � V0

1 + σ 2V0t
(39)

which shows that

lim
t→∞ V̄t = 0. (40)

Alternatively, if we introduce the ‘localization’ process 5t = V̄ −1
t then it follows from (37)

that ∂t5t � σ 2, which shows that 5t increases without bound [14, 15]. In (39) we see an
example of the role of τR = (σ 2V0)

−1 as the characteristic timescale of the reduction process.
Since Vt is non-negative, it follows that

lim
t→∞Vt = 0 (41)

almost surely. The dynamical process (11) therefore induces a collapse of the wavefunction,
for any choice of the initial state |ψ0〉, to an eigenstate of the Hamiltonian.

5. Fluctuation analysis

The martingale property (26) satisfied by the energy process Ht implies in the limit t → ∞,
that E[H∞] = H0. However, the terminal value H∞ of the energy process, the existence of
which we shall establish shortly, is necessarily one of the energy eigenvalues, from which it
follows that

H0 =
∑
n

πnEn (42)

where πn is the probability of reaching the eigenstate |n〉 starting from the given initial state.
Therefore, the ensemble average of the measured value of the energy equals the expectation
value of the energy in the initial state, as it should.

The importance of this conclusion is that whereas in quantum measurement theory it is
essentially an assumption that the ‘expectation value’ of an observable in a given state is the
ensemble average for the result of a measurement of the observable, in a martingale model
one can prove that the asymptotic ensemble average agrees with the expectation value, hence
justifying the conventional interpretation of this quantity. In particular, using (26) we can write

Ht = Et [H∞] (43)
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which shows that the quantum expectation valueHt of the observableH at time t is always the
best ‘forecast’, based on information currently available, for the outcome of a measurement of
H .

A similar result holds for the dispersion of the measured values of the energy. This can
be established by use of the Ito isometry. If At and Bt are Ft -adapted real processes that
are square-integrable in the sense that E[

∫ t
0 A

2
s ds] < ∞ and E[

∫ t
0 B

2
s ds] < ∞, then the Ito

isometry states that

E

[(∫ t

0
As dWs

) (∫ t

0
Bs dWs

)]
= E

[∫ t

0
AsBs ds

]
. (44)

It follows therefore from (24) that

E
[
(Ht −H0)

2
] = σ 2E

[(∫ t

0
Vs dWs

)2
]

= σ 2E

[∫ t

0
V 2
s ds

]
(45)

by virtue of the Ito isometry. By use of expression (33) for Vt we then deduce that

E
[
(Ht −H0)

2
] = V0 − E[Vt ]. (46)

Taking the limit t → ∞ and using the fact that limt→∞ V̄t = 0, we get

Var
[
H∞

] = E
[
(H∞ − E[H∞])2

]
= V0 (47)

which demonstrates that the variance of the measured energy is in agreement with the squared
energy uncertainty in the initial state.

During the course of the reduction process, the energy Ht of the system can, in principle,
deviate far from its initial value H0, subject to the condition that it stays in the range
Ht ∈ [E−, E+], where E− and E+ are the lowest and highest energy levels. Nevertheless,
we can show that on averageHt will not deviate too much fromH0: an upper bound can be set
on the maximum fluctuation experienced by the energy, on average, as the reduction proceeds.
This bound is given by 2+H , twice the initial energy uncertainty.

The proof of this result makes use of the Doob–Kolmogorov maximal inequalities (see,
e.g., [16], theorem 6.10, or [17], theorem 1.7, p 54). These inequalities state that if Mt is a
right-continuous martingale or positive submartingale, and E[|MT |p] < ∞ for some p � 1,
then

E
[

sup
0�t�T

|Mt |p
]

�
(

p

p − 1

)p
E

[|MT |p] (p > 1) (48)

and

Prob
[

sup
0�t�T

|Mt | > κ
]

� 1

κp
E[|MT |p] (p � 1) (49)

for any constant κ > 0.
In the present context, we are especially interested in the inequality obtained in the case

p = 2, for which we have the relation

E
[

sup
0�t�T

M2
t

]
� 4E

[
M2
T

]
(50)

which is known as Doob’s L2-inequality. Now, settingMt = Ht −H0 and using equation (46)
we obtain

E
[

sup
0�t�T

(Ht −H0)
2
]

� 4(V0 − VT ). (51)
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In particular, taking the limit T → ∞, it follows from (41) that

E
[

sup
0�t�∞

(Ht −H0)
2
]

� 4V0 (52)

which shows that, on average, the energy stays within two standard deviations of its original
value.

This result is consistent with the intuition often arising in physical arguments to the effect
that when a system is in a state of uncertain energy, then the energy fluctuates, with a typical
fluctuation roughly of the magnitude ∼+H . There is no quantum mechanical principle which
states that such fluctuations actually occur, but one can see that in a martingale model there may
indeed be a natural basis for inferring the existence of fluctuations of the required magnitude.
We note that the bound implied by the inequality (52) is independent of the choice of σ , which
shows that it is valid also for relatively stable, long-lived states, i.e. those for which σ 2V0 is
small.

From (49) we can determine an upper bound on the probability that the magnitude of
the energy fluctuation will exceed any designated threshold during the reduction process.
Specifically, if we set p = 2 and κ = λ√V0, then taking the limit T → ∞ we obtain

Prob
[

sup
0�t�∞

(Ht −H0)
2 > λ2V0

]
� 1

λ2
. (53)

A related bound for the variance process Vt can be obtained by use of Doob’s maximal
inequality for positive supermartingales (see, e.g., [17], p 58). This relation states that, if Xt
is a right-continuous positive supermartingale, then for any constant k � 0, we have

Prob
[

sup
0�t�∞

Xt > k
]

� 1

k
E[X0]. (54)

In the case of the variance process Vt , which as we have shown is a positive supermartingale,
if we set k = λ2V0, then (54) becomes

Prob
[

sup
0�t�∞

Vt > λ
2V0

]
� 1

λ2
. (55)

This relation shows that, during the reduction process, although the energy variance can
increase owing to random fluctuations, there is a bound on the probability that the energy
uncertainty ever reaches λ times the ensemble average of the initial uncertainty for any given
value of λ, and this bound is given by λ−2.

Let us return now to the asymptotic relation E[H∞] = H0 and ask whether the terminal
valueH∞ of the energy process actually exists as a random variable. To prove that it does, we
make use of the martingale convergence theorem, which in a form sufficient for our purpose
states that if a continuous martingale Mt satisfies E [|Mt |p] � k for some p > 1 and k < ∞,
and for all t ∈ [0,∞), then there exists a random variable M∞ satisfying E [|M∞|p] � k

and Mt = Et [M∞], with the properties that limt→∞Mt = M∞ almost surely and that
limt→∞ E [|Mt −M∞|p] = 0.

In the present context, by setting Mt = Ht − H0, we thus deduce the existence of an
asymptotic random variableH∞ with the property thatHt converges toH∞ almost surely, and
Ht = Et [H∞].

We conclude this section by generalizing (47) to demonstrate that the energy variance
process Vt defined by (23) has the natural interpretation

Vt = Vart [H∞] . (56)

That is to say, Vt is given by the conditional variance of the terminal value of the energy, given
information up to time t . To establish this relation we proceed as follows.
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For any random variable X on the probability space (�,F,P) we define the conditional
variance Var[X|E] with respect to the σ -subfield E ⊂ F by

Var[X|E] = E
[
(X − E[X|E])2|E]

. (57)

It follows as an application of the law of total probability that

Var[X] = E [Var[X|E]] + Var [E[X|E]] (58)

the so-called conditional variance formula. Thus for example if Ft (0 � t <∞) is a filtration
of (�,F,P) and we write Vart [X] = Var[X|Ft ], then

Vart [X] = Et
[
(X − Et [X])2

]
(59)

and for the conditional variance formula we have

Var[X] = E [Vart [X]] + Var [Et [X]] . (60)

In the problem at hand, we note that in the limit t → ∞ formula (33) for the variance
process Vt takes the form

V0 + σ
∫ ∞

0
βu dWu = σ 2

∫ ∞

0
V 2
u du. (61)

Therefore, taking the conditional expectation of each side of this relation and using formula (25)
we deduce that

V0 + σ
∫ t

0
βu dWu = σ 2Et

[∫ ∞

0
V 2
u du

]
. (62)

Substituting this relation into (33) then gives us

Vt = σ 2Et

[∫ ∞

0
V 2
u du

]
− σ 2

∫ t

0
V 2
u du

= σ 2Et

[∫ ∞

t

V 2
u du

]

= σ 2Et

[(∫ ∞

t

Vu dWu

)2
]

= Et
[
(H∞ −Ht)2

]
= Vart [H∞] (63)

as desired. We note that in the next to last step here we have used (24) together with the
conditional Ito isometry

Et

[(∫ T

t

Au dWu

)2
]

= Et

[∫ T

t

A2
u du

]
(64)

valid for any adapted integrand Au satisfying E
[ ∫ T

0 A
2
u du

]
<∞.

A positive supermartingale with the property that its expectation goes to zero
asymptotically is called a potential [18]. The analysis above shows that the variance process
associated with quantum state reduction satisfies these conditions and admits a Doob–Meyer
decomposition of the form

Vt = Et [Z∞] − Zt (65)

where

Zt = σ 2
∫ t

0
V 2
u du (66)

is an increasing process.
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6. Reduction probability

The probability πn of reduction to a specific energy level En, under the dynamics governed by
the stochastic differential equation (11), can be determined as follows. The method we use is
essentially that of [5, 8].

First we observe that for any operator Ĝ acting on H, the process Gt for the expectation
value of Ĝ in the state |ψt 〉 satisfies

dGt = −i〈ψt |[Ĝ, Ĥ ]|ψt 〉 dt + 1
4σ

2〈ψt |
(
Ĥ ĜĤ − 1

2 {Ĥ 2, Ĝ})|ψt 〉 dt

+ 1
2σ 〈ψt |{(Ĝ−Gt), (Ĥ −Ht)}|ψt 〉 dWt. (67)

Here [X̂, Ŷ ] = X̂Ŷ − Ŷ X̂ and {X̂, Ŷ } = X̂Ŷ + Ŷ X̂ denote the commutator and the
anticommutator, respectively.

The drift term in (67) consists of two parts: the first is the familiar Ehrenfest term involving
the commutator with the Hamiltonian; the second is a term of the Lindblad type [Ĥ , [Ĝ, Ĥ ]]
arising as a consequence of the diffusive dynamics of the state vector. The volatility term
in (67), i.e. the coefficient of dWt , is given by the covariance of Ĝ and Ĥ in the state |ψt 〉. If
Ĝ and Ĥ commute, then the drift vanishes, and (67) reduces to

dGt = σ (〈ψt |ĜĤ |ψt 〉 −GtHt
)

dWt (68)

from which it follows that the processGt is a martingale [8]. This is consistent with our earlier
observation thatHt is itself a martingale, and that the processGt corresponding to any function
of the form Ĝ = g(Ĥ ) is also a martingale.

Now let us consider the projection operator P̂n for the subspace Hn of H spanned by
the energy eigenstates with energy En. In the case of a nondegenerate eigenvalue, we have
P̂n = |n〉〈n|. On the other hand, if En is a degenerate eigenvalue, then

P̂n =
dn∑
j=1

|n, j〉〈n, j | (69)

as in (7), where dn is the dimension of the subspace Hn and |n, j〉 (j = 1, 2, . . . , dn) is an
orthonormal basis for Hn. Clearly P̂n commutes with the Hamiltonian Ĥ for any value of
n. Furthermore, the relations Ĥ P̂n = P̂nĤ = EnP̂n and Ĥ = ∑

n EnP̂n are equivalent on
account of the resolution of identity

D∑
n=1

P̂n = 1 (70)

where D is the number of distinct energy eigenvalues.
Now let us write

Pnt = 〈ψt |P̂n|ψt 〉
〈ψt |ψt 〉 (71)

for the expectation of the projection operator P̂n in the state |ψt 〉. Because P̂n commutes with
the Hamiltonian, we deduce that the process P̂nt is a martingale for each value of n. We note
that

∑
n Pnt = 1 and

∑
n EnPnt = Ht . In particular, by settingGt = Pnt , one infers from (68)

that

dPnt = σPnt (En −Ht) dWt. (72)

This stochastic differential equation implies that Pnt will continue to fluctuate as long as
Ht �= En and Pnt �= 0. The solution of (72) is given by Pnt = Pn0Mnt , where

Mnt = exp

(
σ

∫ t

0
(En −Hs) dWs − 1

2σ
2
∫ t

0
(En −Hs)2 ds

)
(73)
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and Pn0 is the initial expectation value of the projection operator P̂n. This follows from the fact
that for any bounded Ft -adapted process σt the solution of the stochastic differential equation
dXt = σtXt dWt (X0 > 0) is

Xt = X0 exp

(∫ t

0
σs dWs − 1

2

∫ t

0
σ 2
s ds

)
(74)

which one can verify by an application of Ito’s lemma. Because Pnt is a martingale, it follows
that

E [Pn∞] = Pn0. (75)

Here E[Pn∞] is the ensemble average of the expectation value of the projection operator P̂n
at the terminal energy eigenstate of the reduction process. Because Pn∞ takes the value one
if the terminal energy has eigenvalue En and takes the value zero otherwise, it follows that
E[Pn∞] is the probability of reaching a state with energy En, i.e.

E [Pn∞] = πn. (76)

With these observations at hand, we are now in a position to interpret the asymptotic
martingale relation (75). If En is a nondegenerate eigenvalue, then Pn0 is the usual expression
for the Dirac transition probability from the initial state |ψ0〉 to the eigenstate |n〉, given by

Pn0 = 〈ψ0|n〉〈n|ψ0〉
〈ψ0|ψ0〉〈n|n〉 . (77)

Thus we conclude, in the case of a nondegenerate Hamiltonian, that the martingale model for
quantum state reduction allows one to deduce the correct transition probabilities.

In the case of a degenerate eigenstate, the probability πn can also be interpreted in terms
of a Dirac transition probability. In particular, whether or not the spectrum of the Hamiltonian
is degenerate, we can write

Pn0 = 〈ψ0|P̂n|ψ0〉
〈ψ0|ψ0〉

= (〈ψ0|P̂n|ψ0〉)2
〈ψ0|ψ0〉〈ψ0|P̂n|ψ0〉

= 〈Pnψ0|ψ0〉〈ψ0|Pnψ0〉
〈ψ0|ψ0〉〈ψ0|P̂n|ψ0〉

= 〈Pnψ0|ψ0〉〈ψ0|Pnψ0〉
〈ψ0|ψ0〉〈ψ0|P̂ 2

n |ψ0〉
= 〈Pnψ0|ψ0〉〈ψ0|Pnψ0〉

〈ψ0|ψ0〉〈Pnψ0|Pnψ0〉 (78)

where the Lüders state |Pnψ〉 is defined by

|Pnψ0〉 � P̂n|ψ0〉. (79)

Therefore, by virtue of (75) and (78), we see that the probability of obtaining the eigenvalue
En is given by the Dirac transition probability from the given initial state |ψ0〉 to the Lüders
state |Pnψ0〉.

The interesting point here is that, once again, while this is an assumption in standard
quantum theory, it arises as a deduction in the martingale model for quantum state reduction.

In fact, we can demonstrate, in the case of a degenerate eigenvalue, that the reduction
necessarily results in the Lüders state if the corresponding eigenvalue is obtained. This can be
seen as follows.
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For each value of n = 1, 2, . . . , D, such that P̂n|ψ0〉 �= 0 let us write

|n, 1〉 = P̂n|ψ0〉
〈ψ0|P̂n|ψ0〉1/2

(80)

for a basis vector corresponding to the normalized Lüders state for that projection operator,
and let |n, j〉, j �= 1, be an associated basis for the states orthogonal to |n, 1〉 that lie in the
subspace Hn spanned by eigenstates of energy En. The operator

<̂n �
dn∑
j=2

|n, j〉〈n, j |

= P̂n − |n, 1〉〈n, 1| (81)

thus projects onto the subspace of Hn consisting of vectors orthogonal to the Lüders state for
that value of n. Evidently, we have

<̂n|ψ0〉 = 0 (82)

which follows from (80) and the fact that <̂nP̂n = <̂n. Since the projection operator <̂n
commutes with the Hamiltonian, the process

<nt = 〈ψt |<̂n|ψt 〉
〈ψt |ψt 〉 (83)

is a martingale, the initial value of which is<n0 = 0 on account of the relation (82). Therefore,
by virtue of the martingale relation E [<n∞] = <n0, we deduce that E[<n∞] = 0. Now,<n∞
is a non-negative random variable. Therefore, if E[<n∞] = 0 then<n∞ = 0 almost surely. It
follows that the terminal state must be orthogonal to the subspace of Hn spanned by states with
energy En that are orthogonal to the Lüders state. As a consequence, we see that if reduction
occurs to a state of energy En, then that state must be the Lüders state corresponding to that
eigenvalue.

In fact, we deduce a stronger result: namely, that the stochastic motion of the state vector,
during the course of the reduction process, is necessarily confined to the D-dimensional
subspace of H spanned by the Lüders states P̂n|ψ0〉, for n = 1, 2, . . . , D, where D is the
number of distinct energy eigenvalues and P̂n is the projection operator onto the subspace Hn

of H spanned by eigenstates with eigenvalue En.
The proof of this theorem follows from the fact that, for each n, the process <nt is a

martingale, and because <n0 = 0 we have E[<nt ] = 0 for all t � 0 and thus <nt = 0 for all
t � 0. Therefore the state vector |ψt 〉 always lies in the space spanned by the vectors P̂n|ψ0〉
for n = 1, 2, . . . , D.

A similar analysis is valid in the more general situation for which the dynamics of |ψt 〉
are given by a stochastic differential equation of the form

d|ψt 〉 = −iĤ |ψt 〉 dt − 1
8

r∑
α=1

σ 2
α (F̂α − Fαt )2|ψt 〉 dt + 1

2

r∑
α=1

σα(F̂α − Fαt ) dWα
t . (84)

Here F̂α (α = 1, 2, . . . , r) represents a commuting family of observables, each of which
also commutes with the Hamiltonian Ĥ , the σα are associated coupling constants, and we
write Fαt for the expectation of F̂α in the state |ψt 〉. In this case Wα

t denotes a standard r-
dimensional Brownian motion, and the reduction proceeds to a common eigenstate of operators
F̂α (α = 1, 2, . . . , r). Most of the results of this paper are applicable mutatis mutandis to this
more general class of reduction process, though in what follows we shall, for simplicity,
continue to confine the detailed discussion to the case of the energy-based reduction (11).
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7. The case of an initially mixed state

Thus far we have considered the role of the Lüders postulate as it applies to an initially pure
state |ψ0〉, and we have demonstrated that the postulate follows directly as a consequence of the
martingale model for quantum state reduction. The Lüders postulate is, however, applicable
in a more general context as well: namely, when the initial state is specified as a mixture
with density matrix ρ̂0. In that case, when an observable F is measured, the associated state
reduction is given by the Lüders rule

ρ̂0 �→ P̂nρ̂0P̂n

TrP̂nρ̂0

(85)

for the density matrix, if the measurement result is the eigenvalue fn, and this occurs with
probability

πn = TrP̂nρ̂0. (86)

Here, as before, P̂n denotes the projection operator onto the subspace Hn of H spanned by
eigenstates with the eigenvalue fn, which may or may not be degenerate.

The interpretation of an expression involving density matrices, such as (85), is best
understood in terms of ensemble averages. Thus (85) means that if initially ρ̂0 can be used to
compute the expectation of any observableG, not necessarily compatible with F , then after F
is measured, and if the result fn is observed, the density matrix P̂nρ̂0P̂n/TrP̂nρ̂0 can be used
to compute the expectation of G in a subsequent measurement.

Additionally, given the initial density matrix ρ̂0, if F is measured but no note is taken of
the result, then the ensemble average for a subsequent measurement of the observable G is
Trρ̂∞Ĝ, where

ρ̂∞ =
∑
n

P̂nρ̂0P̂n. (87)

It should be borne in mind that these transformations, while generally regarded as part of the
standard apparatus of quantum theory, are not derivable from any of the more basic assumptions
of quantum mechanics, and have to be regarded as constituting an additional postulate. See,
e.g., [19] for an illuminating brief account of the status of the projection postulate in quantum
mechanics, and its relation to state reduction. It is interesting to note that von Neumann, in his
original splendid work on the subject [1], apparently failed to offer a satisfactory expression for
the density matrix in the case of the measurement of an observable with a degenerate spectrum,
a deficiency only later rectified by Lüders and others [2] (cf [20], section 9, and the remark
attributed to Wightman on p 550 of [21]).

The general Lüders rule (85) has the important property that, in the measurement of an
observable with a degenerate spectrum, if the initial state is not pure, then the final state need
not be pure, if the result of the measurement is one of the degenerate eigenvalues.

Now let us see if we can gain a clearer understanding of the general Lüders formulae (85)–
(87) by consideration of the martingale model for quantum state reduction. In the theory of
stochastic differential equations, it is acceptable that the initial value of the random process
should itself be a random variable; thus it is merely a special case when |ψ0〉 in (11) is known.
The deterministic case corresponds to the situation where the initial density matrix is pure,
i.e. of rank one. In the general case, where |ψ0〉 is random, i.e. given by a mixture, the
corresponding initial density matrix ρ̂0 is the ensemble average

ρ̂0 = E [|Ψ0〉〈Ψ0|] (88)
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where |Ψ0〉 is a random initial state vector, which we assume to be normalized. Then for the
final density matrix we have

ρ̂∞ =
∑
n

E

[
πn(Ψ0)

P̂n|Ψ0〉〈Ψ0|P̂n
〈Ψ0|P̂n|Ψ0〉

]
(89)

as a consequence of the reduction

|Ψ0〉 �→ P̂n|Ψ0〉
〈Ψ0|P̂n|Ψ0〉1/2

(90)

where πn(Ψ0) is the conditional probability that the eigenvalue En is obtained, given the
random initial state |Ψ0〉. However, this conditional probability is given by

πn(Ψ0) = 〈Ψ0|P̂n|Ψ0〉 (91)

i.e. the Dirac transition probability to the random Lüders state determined by the random initial
state |Ψ0〉, in accordance with (78). As a consequence we see that (89) simplifies to give

ρ̂∞ =
∑
n

E
[
P̂n|Ψ0〉〈Ψ0|P̂n

]
=

∑
n

P̂nE [|Ψ0〉〈Ψ0|] P̂n

=
∑
n

P̂nρ̂0P̂n (92)

and thus we obtain (87). Additionally we have

ρ̂∞ =
∑
n

πnρ̂n∞ (93)

where

ρ̂n∞ = P̂nρ̂0P̂n

TrP̂nρ̂0

(94)

is the reduced or ‘conditional’ density matrix, given that the observer has knowledge of the
result H = En, and

πn = E [πn(Ψ0)]

= E
[〈Ψ0|P̂n|Ψ0〉

]
= E

[
TrP̂n|Ψ0〉〈Ψ0|

]
= TrP̂nE [|Ψ0〉〈Ψ0|]
= TrP̂nρ̂0 (95)

is the probability of this result.

8. Dynamics of the density matrix

To gain further insight into the case where the initial density matrix is not pure, we can make
a computation of the dynamics for ρ̂t . This can be achieved by examination of the Lindblad
equation associated with the stochastic differential equation (11), which in this case turns out
to be solvable.

If we start with equation (67) for the dynamics of the expectation value of an arbitrary
operator Ĝ in the random state |ψt 〉, and take the ensemble average

E [Gt ] = TrĜρ̂t (96)
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where ρ̂t = E[|ψt 〉〈ψt |], we find that

dE[Gt ] = TrĜ dρ̂t
= −iTrρ̂t [Ĝ, Ĥ ] dt + 1

4σ
2Trρ̂t

(
Ĥ ĜĤ − 1

2 Ĥ
2Ĝ− 1

2 ĜĤ
2
)

dt

= −iTrĜ[Ĥ , ρ̂t ] dt + 1
4σ

2TrĜ
(
Ĥ ρ̂t Ĥ − 1

2 ρ̂t Ĥ
2 − 1

2 Ĥ
2ρ̂t

)
dt (97)

where in the second equality we make use of the cyclic property of the trace operator. This
relation has to hold for any observable G, from which it follows that

∂t ρ̂t = −i[Ĥ , ρ̂t ] + 1
4σ

2
(
Ĥ ρ̂t Ĥ − 1

2 Ĥ
2ρ̂t − 1

2 ρ̂t Ĥ
2
)

(98)

where ∂t = ∂/∂t . This is the general equation of the Lindblad type [22,23] associated with the
stochastic differential equation (11), for which 1

2σĤ is the corresponding Lindblad operator.
Now we consider the problem of solving the Lindblad equation (98) subject to an arbitrary

specification of the initial density matrix ρ̂0. For convenience we switch to a Heisenberg
representation in which the density matrix is defined by the operator

r̂t � eiĤ t ρ̂te
−iĤ t . (99)

This has the effect of removing the purely unitary part of the evolution. For the dynamics of
r̂t we have

∂t r̂t = eiĤ t (∂t ρ̂t )e
−iĤ t + i[Ĥ , r̂t ] (100)

and therefore

∂t r̂t = 1
4σ

2
(
Ĥ r̂t Ĥ − 1

2 Ĥ
2r̂t − 1

2 r̂t Ĥ
2
)
. (101)

Let us write P̂n for the projection operator onto the subspace Hn. Then, because P̂nĤ =
Ĥ P̂n = EnP̂n, if we multiply each side of equation (101) by P̂n on both the right and the left
we obtain

∂t (P̂nr̂t P̂n) = 0 (102)

from which it follows that P̂nr̂t P̂n is a constant of the motion. In particular, we have
P̂nr̂0P̂n = P̂nr̂∞P̂n, and thus P̂nρ̂0P̂n = P̂nρ̂∞P̂n, and therefore∑

n

P̂nρ̂0P̂n =
∑
n

P̂nρ̂∞P̂n. (103)

Because the terminal state is necessarily a mixture of energy eigenstates we have∑
n

P̂nρ̂∞P̂n = ρ̂∞ (104)

from which by use of (103) we immediately infer the general form of the Lüders reduction
postulate (87).

To proceed further we define the operator matrix valued process R̂nm(t) by

R̂nm(t) � P̂nr̂t P̂m. (105)

For each of the values of n and m, R̂nm(t) is a time-dependent Hermitian operator. Here,
n,m = 1, 2, . . . , D, whereD is the number of distinct energy levels. From equation (101) for
the dynamics of r̂t we deduce, by use of the relation P̂nĤ = EnP̂n, that

∂tR̂nm(t) = − 1
8σ

2(En − Em)2R̂nm(t). (106)

The general solution of the ordinary differential equation (106) is given by

R̂nm(t) = R̂nm(0) exp
( − 1

8σ
2(En − Em)2t

)
= P̂nr̂0P̂m exp

( − 1
8σ

2(En − Em)2t
)
. (107)
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On the other hand, by use of the resolution of the identity (70) it follows from (105) that

r̂t =
∑
n,m

R̂nm(t)

=
∑
n,m

P̂nr̂0P̂m exp
( − 1

8σ
2(En − Em)2t

)
=

∑
n�=m

P̂nr̂0P̂m exp
( − 1

8σ
2(En − Em)2t

)
+

∑
n

P̂nr̂0P̂n. (108)

Therefore, by inverting the transformation (99), we obtain the solution of the Lindblad equation
in the original Schrödinger picture as:

ρ̂t =
∑
n �=m

P̂nρ̂0P̂m exp
( − i(En − Em)t − 1

8σ
2(En − Em)2t

)
+

∑
n

P̂nρ̂0P̂n. (109)

We recover the initial state ρ̂0 by setting t = 0 in the right-hand side of (109). The off-diagonal
terms are damped away exponentially at the rate 1

8σ
2Vnm as t → ∞, where Vnm = (En−Em)2

is the square of the spread between relevant energy levels, and we are left with the Lüders
state (87) for the terminal density matrix ρ̂∞.

It is interesting to observe that the Lüders state, obtained by the limit as t → ∞ of the
density matrix associated with the reduction process (11), coincides with the asymptotic time
average of the density matrix in the case of a purely unitary evolution governed by the von
Neumann equation

∂ρ̂t

∂t
= −i[Ĥ , ρ̂t ] (110)

for which the solution is ρ̂t = e−iĤ t ρ̂0eiĤ t . More specifically, if we write

〈ρ̂〉T � 1

T

∫ T

0
ρ̂t dt (111)

for the time average of ρ̂t up to time T , then we find that

lim
T→∞

〈ρ̂〉T =
∑
n

P̂nρ̂0P̂n (112)

where P̂n is the projection operator onto the subspace Hn ⊂ H spanned by the states of energy
En. This result can be verified directly by use of the resolution of the identity (70). The
calculation is as follows:

〈ρ̂〉T = 1

T

∑
m,n

∫ T

0
P̂ne

−iĤ t ρ̂0eiĤ t P̂m dt

= 1

T

∑
m,n

P̂nρ̂0P̂m

∫ T

0
e−i(En−Em)t dt

=
∑
n

P̂nρ̂0P̂n +
1

T

∑
m �=n

P̂nρ̂0P̂m

(
sin(ωnmT )

ωnm
+ i

cos(ωnmT )− 1

ωnm

)

(113)

where ωnm = En − Em. Therefore, in the limit T → ∞ the off-diagonal terms drop out, and
we recover (112). For a closely related result see [24].
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9. Change of measure

We return now to the stochastic differential equation (11) governing quantum state reduction
with a view to gaining further insights into the nature of the resulting dynamics. We shall
demonstrate in this section how a ‘change of measure’ technique can be used to solve (11) and
thus, in effect, to construct an explicit unravelling of the Lindblad equation (98). The change
of measure method has been found to be useful in other applications of stochastic calculus as
well e.g. mathematical finance. The general problem of formulating an appropriate unravelling
of the Lindblad equation in a given physical context is a matter of considerable interest in a
number of areas of modern physics [25–30].

We begin with the following remark. Let µ̂t and σ̂t be bounded Ft -adapted operator-
valued processes on (�,F,P) with the property that for all s, t ∈ [0,∞) the random matrices
µ̂s , µ̂t , σ̂s and σ̂t mutually commute. Then the stochastic differential equation

d|ψt 〉 = µ̂t |ψt 〉 dt + σ̂t |ψt 〉 dWt (114)

has the unique solution

|ψt 〉 = exp

(∫ t

0

(
µ̂s − 1

2 σ̂
2
s

)
ds +

∫ t

0
σ̂s dWs

)
|ψ0〉. (115)

Here we allow for the possibility that the initial state |ψ0〉 may be random. A straightforward
application of Ito’s lemma shows that (115) leads back to (114). In the case of the reduction
process (11), which is evidently of the form (114), we can write

µ̂t = −iĤ − 1
8σ

2
(
Ĥ −Ht

)2
σ̂t = 1

2σ
(
Ĥ −Ht

)
. (116)

It follows therefore that

|ψt 〉 = exp

(
−iĤ t − 1

4σ
2
∫ t

0

(
Ĥ −Hs

)2
ds + 1

2σ

∫ t

0

(
Ĥ −Hs

)
dWs

)
|ψ0〉. (117)

This is still an implicit solution for |ψt 〉, because Hs = 〈ψs |Ĥ |ψs〉. Nevertheless, as a
consequence of (117) we see that the evolution of the state vector according to (11) can be
expressed in the simple form

|ψt 〉 = Ût R̂t |ψ0〉 (118)

where the operator-valued process Ût is defined by

Ût � exp
( − iĤ t

)
(119)

and the operator-valued process R̂t is defined by

R̂t � exp

(
1
2σ

∫ t

0

(
Ĥ −Hs

)
dWs − 1

4σ
2
∫ t

0

(
Ĥ −Hs

)2
ds

)
. (120)

We note that Ût is unitary and that Ût and R̂t commute. The square of R̂t , which we denote
by M̂t , is an operator-valued martingale. The fact that M̂t satisfies the martingale condition
Es[M̂t ] = M̂s is evident from the expression

M̂t = exp

(
σ

∫ t

0

(
Ĥ −Hs

)
dWs − 1

2σ
2
∫ t

0

(
Ĥ −Hs

)2
ds

)
. (121)

In particular, if P̂n is the projection operator onto the subspace Hn ⊂ H spanned by the states
of energy En, then we find that

M̂t =
∑
n

P̂nMnt (122)
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where Mnt is given by (73). We note that for each value of n the process Mnt is in fact an
exponential martingale.

Now suppose that Ĝ is an observable that commutes with the Hamiltonian Ĥ . Then for
its expectation in the state |ψt 〉 we have

Gt = 〈ψt |Ĝ|ψt 〉
= 〈ψ0|R̂t Û †

t ĜÛt R̂t |ψ0〉
= 〈ψ0|ĜM̂t |ψ0〉 (123)

and therefore

Es [Gt ] = Es
[〈ψ0|ĜM̂t |ψ0〉

]
= 〈ψ0|ĜEs[M̂t ]|ψ0〉
= 〈ψ0|ĜM̂s |ψ0〉
= 〈ψ0|R̂sĜR̂s |ψ0〉
= 〈ψ0|R̂sÛ †

s ĜÛsR̂s |ψ0〉
= 〈ψs |Ĝ|ψs〉 (124)

which shows that Gt is a martingale. In this way we are able to verify directly that the
dynamical law (11) implies that the expectation value of any observable that commutes with
the Hamiltonian is a weakly conserved quantity.

To proceed further we note that it is a straightforward algebraic exercise to verify that M̂t

can be expressed as the following quotient:

M̂t = exp
(
σ

∫ t
0 Ĥ (dWs + σHs ds)− 1

2σ
2
∫ t

0 Ĥ
2 ds

)
exp

(
σ

∫ t
0 Hs(dWs + σHs ds)− 1

2σ
2
∫ t

0 H
2
s ds

) . (125)

In particular, let us define the ‘modified’ Brownian motionW ∗
t by

W ∗
t � Wt + σ

∫ t

0
Hs ds (126)

so dW ∗
t = dWt + σHt dt . Then, because Ĥ is constant, we can write M̂t in the simple form

M̂t = 1

5∗
t

exp

(
σĤW ∗

t − 1

2
σ 2Ĥ 2t

)
(127)

where

5∗
t � exp

(
σ

∫ t

0
Hs dW ∗

s − 1
2σ

2
∫ t

0
H 2
s ds

)
. (128)

The significance of the processesW ∗
t and 5∗

t will become apparent shortly.
We have already verified that (11) preserves the norm of |ψ0〉. If we assume that

〈ψ0|ψ0〉 = 1, then it follows from (118) that 〈ψ0|M̂t |ψ0〉 = 1 for all t . Thus we deduce
from (125) and (126) that

5∗
t = 〈ψ0| exp

(
σĤW ∗

t − 1
2σ

2Ĥ 2t
)|ψ0〉. (129)

As a consequence we can write

M̂t = exp
(
σĤW ∗

t − 1
2σ

2Ĥ 2t
)

〈ψ0| exp
(
σĤW ∗

t − 1
2σ

2Ĥ 2t
)|ψ0〉

(130)
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which has the important effect of localizing the dependence of M̂t on Ht in the modified
Brownian motion W ∗

t . The process Ht in turn is given by (12), from which it follows that
Ht = 〈ψ0|Ĥ M̂t |ψ0〉. Therefore, by use of (130) we have

Ht = 〈ψ0|Ĥ exp
(
σĤW ∗

t − 1
2σ

2Ĥ 2t
)|ψ0〉

〈ψ0| exp
(
σĤW ∗

t − 1
2σ

2Ĥ 2t
)|ψ0〉

(131)

which shows that Ht can be expressed as a function ofW ∗
t and t . This is given explicitly by

Ht =
∑
n πnEn exp

(
σEnW

∗
t − 1

2σ
2E2

nt
)

∑
n πn exp

(
σEnW

∗
t − 1

2σ
2E2

nt
) (132)

where as usual πn denotes the probability that the eigenvalue attained is En, given the initial
state |ψ0〉. We also note that

5∗
t =

∑
n

πn exp
(
σEnW

∗
t − 1

2σ
2E2

nt
)

(133)

and that

M̂t =
∑
n P̂n exp

(
σEnW

∗
t − 1

2σ
2E2

nt
)

∑
n πn exp

(
σEnW

∗
t − 1

2σ
2E2

nt
) . (134)

Now we proceed to examine the processes W ∗
t and 5∗

t more closely. This is the point at
which we introduce the highly useful concept of a change of probability measure. We shall
see in what follows that there exists a change of measure P → Q such that for any given finite
interval of time [0, T ] the processW ∗

t for t ∈ [0, T ] is a Brownian motion with the probability
space (�,FT ,Q) on the filtration Ft (0 � t � T ). The implication of this is that with respect
to the measure Q the basic processesHt ,5∗

t , and M̂t can be expressed in terms of ratios of sums
of geometric Brownian motions, thus offering a significant element of analytic tractability.

We begin with a few mathematical preliminaries concerning the change of measure
technique. Given the probability space (�,F,P), we recall that 1A denotes the indicator
function of the event A ∈ F . Thus for each ω ∈ � we have 1A(ω) = 1 if ω ∈ A and
1A(ω) = 0 if ω /∈ A. It follows that

ProbP[A] = EP [1A] (135)

where ProbP and EP denote probability and expectation with respect to the measure P.
Now let 5 be a positive random variable on the probability space (�,F,P). Then we

can define a new probability measure Q on the underlying measurable space (�,F) by the
formula

ProbQ[A] = EP[51A]

EP[5]
. (136)

Because 5 is positive, this relation is invertible and we have

ProbP[A] = EQ[5∗1A]

EQ[5∗]
(137)

where5∗ = 1/5. The two probability measures P and Q in this case are said to be equivalent
in the sense that they agree on null sets, i.e. for all A ∈ F we have ProbP[A] = 0 if and only
if ProbQ[A] = 0.

In the case of a filtered probability space some important additional structure arises in this
connection. Suppose the process 5t is a positive martingale on (�,F,P) with respect to the
filtration Ft , satisfying50 = 1. For any fixed value of t the random variable5t can be used to
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define a measure Qt on (�,Ft ) according to the procedure outlined in the previous paragraph.
It follows then from (136) by virtue of the martingale property of 5t that

ProbQt [A] = EP [5t1A] (138)

for all A ∈ Ft . We note that if s � t then ProbQs [A] = ProbQt [A] for all A ∈ Fs . This is
because

ProbQt [A] = EP [5t1A]

= EP
[
EP[5t1A|Fs]

]
= EP

[
EP[5t |Fs]1A

]
= EP [5s1A]

= ProbQs [A]. (139)

Therefore, for any finite interval of time [0, T ] the measure thus obtained on (�,FT ) is
independent of the specific choice of T . Thus we can drop the suffix on Q and speak of the
change of measure P → Q induced by the given density martingale 5t .

The key result making use of this apparatus that we require in what follows is the theorem
of Girsanov (see, e.g., [31]). Let [0, T ] be a fixed interval of time, andWt a Brownian motion
on (�,FT ) with respect to the filtration Ft (0 � t � T ) and the measure P. Suppose that the
process λt is Ft -adapted and that

5t = exp

(
−

∫ t

0
λs dWs − 1

2

∫ t

0
λ2
s ds

)
(140)

is a martingale. Then Girsanov’s theorem states that the modified process

W ∗
t � Wt +

∫ t

0
λs ds (141)

is a Brownian motion with respect to the equivalent measure Q induced by the density
martingale5t . For5t to be a martingale it suffices that λs should satisfy the Novikov condition

EP

[
exp

(
1
2

∫ T

0
λ2
s ds

)]
<∞. (142)

In particular, if λt is bounded, then 5t is a martingale.
If 5t is a P-martingale then the associated process 5∗

t = 1/5t given by

5∗
t = exp

(
+

∫ t

0
λs dW ∗

s − 1
2

∫ t

0
λ2
s ds

)
(143)

is a Q-martingale, and induces the inverse change of measure Q → P. In particular, for
any Ft -measurable random variable Xt we have the following formulae for the calculation of
expectations:

EP
s [Xt ] = 1

5∗
s

EQ
s

[
5∗
t Xt

]
(144)

and its reversal

EQ
s [Xt ] = 1

5s
EP
s [5tXt ] . (145)

Returning to the matter at hand, we note that for quantum state reduction the process λt is
given byσHt , which satisfies the Novikov condition becauseHt is bounded. The corresponding
change of measure density martingale is given by

5t = exp

(
−σ

∫ t

0
Hs dWs − 1

2σ
2
∫ t

0
H 2
s ds

)
(146)
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for the transformation P → Q. The processW ∗
t as defined by (126) is a Q-Brownian motion.

The associated inverse transformation Q → P is induced by the process 5∗
t defined in (128).

Now we are in a position to give a complete characterization of the solution of the
dynamical equation (11) for the state reduction problem valid over any finite time interval
[0, T ]. The recipe is as follows.

We start with the measure Q for which W ∗
t is a Brownian motion. Given W ∗

t we then
construct the processHt by use of formula (132), and the process5∗

t by use of formula (133),
and the process M̂t by use of formula (134). Thus we see that the wave function |ψt 〉 along
with all the related processes R̂t , M̂t , 5t , and Ht can be explicitly constructed as functions of
W ∗
t and t . The physical measure P constructed by use of5∗

t is then used for the calculation of
ensemble averages. In particular, letting E denote the expectation with respect to the physical
measure P, it follows from (134) that

E [Xt ] = EQ
[
5∗
t Xt

]
(147)

for any Ft -measurable random variable Xt .
For example, suppose Ĝ is an observable that does not necessarily commute with the

Hamiltonian Ĥ , and we wish to calculate the ensemble average of the expectation value
〈ψt |Ĝ|ψt 〉. Then by use of (147) we have

E
[〈ψt |Ĝ|ψt 〉

] = EQ
[
5∗
t 〈ψt |Ĝ|ψt 〉

]
= EQ

[
5∗
t 〈ψ0|Û †

t R̂t ĜR̂t Ût |ψ0〉
]

= EQ
[〈ψ0|eiĤ t+ 1

2 σĤW
∗
t − 1

4 σ
2Ĥ 2t Ĝe−iĤ t+ 1

2 σĤW
∗
t − 1

4 σ
2Ĥ 2t |ψ0〉

]
= EQ

[ ∑
m,n

Gmne
i(Em−En)t+ 1

2 σ(Em+En)W ∗
t − 1

4 (E
2
m+E2

n)σ
2t

]
(148)

where the matrix elements Gmn are given by

Gmn = 〈ψ0|P̂mĜP̂n|ψ0〉. (149)

SinceW ∗
t is normally distributed with mean zero and variance t with respect to the Q-measure,

the expectation in (148) can be readily computed. By use of the simple relation

EQ
[
eαW

∗
t

] = e
1
2 α

2t (150)

which holds for any constant α, we see that

EQ
[
e

1
2 σ(Em+En)W ∗

t − 1
4 (E

2
m+E2

n)σ
2t
] = e− 1

8 σ
2(Em−En)2t . (151)

As a consequence we deduce that

E
[〈ψt |Ĝ|ψt 〉

] =
∑
m,n

Ḡmne
i(Em−En)t− 1

8 σ
2(Em−En)2t (152)

where

Ḡmn = E
[〈ψ0|P̂mĜP̂n|ψ0〉

]
= Trρ̂0(P̂mĜP̂n)

= TrĜ(P̂nρ̂0P̂m) (153)

and ρ̂0 is the density matrix corresponding to the random initial state. This result is consistent
with our earlier expression (109) for the solution of the Lindblad equation, and illustrates the
fact that the change of measure technique is indeed highly effective as a calculational tool for
quantum state reduction models. For related work, see, e.g. [32].
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